
Intro to LabVIEW

http://workshop.frclabviewtutorials.com

Installation

• Completely different this year!

– (using the new NI Package Manager)

• https://docs.wpilib.org/en/latest/docs/getting-

started/getting-started-frc-control-

system/labview-setup.html

https://docs.wpilib.org/en/latest/docs/getting-started/getting-started-frc-control-system/labview-setup.html

Coding in LabVIEW

Front Panel

Controls

Indicators

Block Diagram

Controls

Indicators

Terminals

Demo

Adding controls and indicators

Demo

Adding controls and indicators

Data Flow

LabVIEW follows a dataflow model for running Vis

• A node executes only when data is available at all of

its required input terminals.

• A node supplies data to the output terminals only

when the node finishes execution.

Demo - Setting a motor

• Read Joystick

• Set Drive motors

Demo - Setting a motor

• Read Joystick

• Set Drive motors

Case Structures

• Have two or more sub diagrams or cases.

• Use an input value to determine which case to

execute.

• Execute and display only one case at a time.

• Are similar to case statements or if...then...else

statements in text-based programming languages.

Case Structures

• Input and Output Tunnels

– You can create multiple input and output tunnels.

– Input tunnels are available to all cases if needed.

– You must define each output tunnel for each case.*

Repetition

• While Loop

Repetition

• While Loop

– Iteration terminal

• Returns number of times loop has executed.

• Is zero-indexed.

Iteration Terminal

Repetition

• While Loop

– Conditional terminal

• Defines when the loop stops.

• Has two options.

– Stop if True

– Continue if True Conditional Terminal

Iteration Terminal

Repetition

• While Loop

– Tunnels transfer data

into and out of

structures.

Repetition

• While Loop

– Tunnels transfer data

into and out of

structures.

– Data pass out of a

loop after the loop

terminates.

Repetition

• While Loop

– Tunnels transfer data into

and out of structures.

– Data pass out of a loop

after the loop terminates.

– When a tunnel passes

data into a loop, the loop

executes only after

data arrives at the tunnel.

Repetition

•While Loop - Demo

Repetition

• While Loop

• For Loop

Repetition

• While Loop

• For Loop

– Count Terminal

FRC Arhitecture

• Begin

FRC Arhitecture

• Begin

FRC Arhitecture

• Begin
–Create references for all joysticks, motors, and

sensors

–Runs at power up

FRC Arhitecture

• Begin

• Teleop

FRC Arhitecture

• Begin

• Teleop

FRC Arhitecture

• Begin

• Teleop
–Primarily used to read joysticks and set drive

motors and actuators

–Only runs while Teleop enabled

FRC Arhitecture

• Begin

• Teleop

• Autonomous

FRC Arhitecture

• Begin

• Teleop

• Autonomous

FRC Arhitecture

• Begin

• Teleop

• Autonomous
–Runs when Autonomous is enabled

FRC Arhitecture

• Begin

• Teleop

• Autonomous

• Timed Tasks

FRC Arhitecture

• Begin

• Teleop

• Autonomous

• Timed Tasks

FRC Arhitecture

• Begin

• Teleop

• Autonomous

• Timed Tasks
–Runs once enabled (during both auto and teleop)

FRC Deploying Code

• Run From Main

FRC Deploying Code

• Run From Main

• Deploy

FRC Deploying Code

• Run From Main

• Deploy

• Run as Startup

Debugging Techniques

• Correcting Broken VI’s

Debugging Techniques

• Correcting Broken VI’s

– Broken Wires Exist (e.g.)

• You wired a Boolean control to a String indicator.

• You wired a numeric control to a numeric control.

Debugging Techniques

• Correcting Broken VI’s

– Broken Wires Exist (e.g.)

• You wired a Boolean control to a String indicator.

• You wired a numeric control to a numeric control.

– A required block diagram terminal is unwired.

Debugging Techniques

• Correcting Broken VI’s

– Broken Wires Exist (e.g.)

• You wired a Boolean control to a String indicator.

• You wired a numeric control to a numeric control.

– A required block diagram terminal is unwired.

– A subVI is broken

Debugging Techniques

• Correcting Broken VI’s

• Correcting Dataflow

– Execution Highlighting

– Single-Stepping & Breakpoints

– Probes

Debugging Techniques

• Correcting Broken VI’s

• Correcting Dataflow

– Are there any unwired or hidden subVIs?

– Is the default data correct?

– Does the VI pass undefined data?

– Are numeric representations correct?

– Are nodes executed in the correct order?

Terminals and LabVIEW datatypes

Data Feedback in Loops

• Shift Registers

– When programming with loops, you often need to

know the values of data from previous iterations of

the loop.

– Shift registers transfer values from one loop

iteration to the next.

Documentation

• Free Labels

Documentation

• Free Labels

– Describe algorithms.

– Have pale yellow backgrounds.

– Double-click in any open space to create.

Documentation

• Free Labels

– Describe algorithms.

– Have pale yellow backgrounds.

– Double-click in any open space to create.

Documentation

• Free Labels

• Owned Labels

– Explain data contents of wires and objects.

– Move with object.

– Have transparent backgrounds.

– Select Visible Items»Label from the shortcut menu

to create.

Documentation

• Free Labels

• Owned Labels

– Explain data contents of wires and objects.

– Move with object.

– Have transparent backgrounds.

– Select Visible Items»Label from the shortcut menu

to create.

Documentation

• Free Labels

• Owned Labels

• Sub diagram Labels

– Case Structures

Documentation

• Free Labels

• Owned Labels

• Sub diagram Labels

– Case Structures

– Loops

Documentation

• Free Labels

• Owned Labels

• Sub diagram Labels

• White Papers

Documentation

• Free Labels

• Owned Labels

• Sub diagram Labels

• White Papers

Keyboard Shortcuts

• CTRL + u = diagram cleanup

• Right Click = palette

• CTRL + Space = quick drop

• CTRL + e = switch window

• CTRL + Shift + e = activate project window

• CTRL + r = Run

• CTRL + t = split window

