
Advanced LabVIEW

http://workshop.frclabviewtutorials.com

Customizing the Dashboard

Customizing the Dashboard

• Open Project

Customizing the Dashboard

• Open Project

• Sending data from robot

Customizing the Dashboard

• Open Project

• Sending data from robot

– Smart Dashboard VI’s

– Named (case sensitive) values

Customizing the Dashboard

• Open Project

• Sending data from robot

– Smart Dashboard VI’s

– Named (case sensitive) values

Customizing the Dashboard

• Open Project

• Sending data from robot

• Sending data to robot

Functional Global Variable

Functional Global Variable

• Side note

– https://frclabviewtutorials.com/tutorials/fgv/

FGV

Functional Global Variable Code

Implementing An FGV

VI Properties

• Quick Intro

– https://frclabviewtutorials.com/tutorials/fgv/

• SR Flip Flop Demo

VI Properties

• Quick Intro

– https://frclabviewtutorials.com/tutorials/fgv/

• SR Flip Flop Demo

– Edge Detector

• https://frclabviewtutorials.com/tutorials/memory-library/

Architectures

• State Machine

Architectures

• State Machine

Architectures

• State Machine

Architectures

• State Machine

• Producer-Consumer

– Parallel loops

• First creating data or instructions

• Other handling

Architectures

• State Machine

• Producer-Consumer

– Parallel loops

– Use either queue or fgv

Producer Consumer Demo

Producer Consumer Demo
• (side note)

– In Computer Science (and CE, but software specifically), there’s a

concept call “separation of concerns”

(Wikipedia: link)

– [Each segment of code should only deal with a single task]

(paraphrased)

• This might be:

– Getting input

– Or controlling the shooter

This set-up, allows you to separate the task of deciding what to

do base on inputs (/auto) and how to do it(/interacting with the

hardware)

https://en.wikipedia.org/wiki/Separation_of_concerns

Type Def.

• Useful for passing data – both controls and indicators

• Demo

Type Def.

• Useful for passing data – both controls and indicators

• Demo

PID

Closed loop control through PID

PID

• WPI Video:

– https://www.youtube.com/watch?list=PL8BLGj0RyhMzNXX9gHBos

WPRbqqn0gJUQ&v=UOuRx9Ujsog&feature=emb_logo

https://www.youtube.com/watch?list=PL8BLGj0RyhMzNXX9gHBosWPRbqqn0gJUQ&v=UOuRx9Ujsog&feature=emb_logo

Closed Loop Control

• Open Loop:

Closed Loop Control

• Open Loop:

Joystick Software Motor controller Robot arm

Closed Loop Control

• Open Loop

• Closed Loop

Joystick

Sensor

“Combined” Software Motor controller Robot arm

Closed Loop Control

• Open Loop

• Closed Loop

– Example

Closed Loop Control

• Open Loop

• Closed Loop

– Example

Move
the arm

Closed Loop Control

• Open Loop

• Closed Loop

– Example

Move
the arm

Tele-op.vi

Closed Loop Control

• Open Loop

• Closed Loop

– Example

Move
the arm

Tele-op.vi Motor X = .25

Closed Loop Control

• Open Loop

• Closed Loop

– Example

Set Arm
Position
to 90 °

Tele-op.vi Motor X = .25 Potentiometer

Closed Loop Control

• Open Loop

• Closed Loop

– Example

Set Arm
Position
to 90 °

Tele-op.vi Motor X Potentiometer

(arm position)

Closed Loop Control - PID

• PID stand for:

– Proportional

– Integral

– Derivative

Set Arm
Position
to 90 °

Tele-op.vi Motor X Potentiometer

(arm position)

Closed Loop Control - PID

• PID stand for:

– Proportional

– Integral

– Derivative

Output = Kp E(t) + Ki ∫ E’(t) + Kd E’(t)

PID

• Proportional

PID

• Proportional

– Constant multiplied by error (offset)

– The larger this is, the faster the robot approaches the setpoint (smaller

rise time)

– If too large, the robot will overshoot the target consistently

PID

• Proportional

– Constant multiplied by error (offset)

– The larger this is, the faster the robot approaches the setpoint (smaller

rise time)

• Integral

– Constant multiplied by integral of all previous error values

– Used to eliminate steady state error (reducing offset after movement)

– If too large, robot will eventually (> 5s) respond vehemently

PID

• Proportional

– Constant multiplied by error (offset)

– The larger this is, the faster the robot approaches the setpoint (smaller

rise time)

• Integral

– Constant multiplied by integral of all previous error values

– Used to eliminate steady state error (reducing offset after movement)

• Differential

– The larger this is, the less overshoot and settling time (less bounce)

– If too large,

PID

• Tuning

PID

• Tuning

– Several methods available

• Ziegler–Nichols*

• Tyreus Luyben

• Cohen–Coon

• Åström-Hägglund

• Manual Tuning*

PID

• Example code

Questions

