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Customizing the Dashboard

• Open Project

• Sending data from robot

• Sending data to robot
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Functional Global Variable

• Side note

– https://frclabviewtutorials.com/tutorials/fgv/



FGV

Functional Global Variable Code



Implementing An FGV
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VI Properties

• Quick Intro

– https://frclabviewtutorials.com/tutorials/fgv/

• SR Flip Flop Demo

– Edge Detector

• https://frclabviewtutorials.com/tutorials/memory-library/
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Architectures

• State Machine

• Producer-Consumer

– Parallel loops

– Use either queue or fgv
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Producer Consumer Demo
• (side note)

– In Computer Science (and CE, but software specifically), there’s a 

concept call “separation of concerns”

(Wikipedia: link)

– [Each segment of code should only deal with a single task] 

(paraphrased)

• This might be:

– Getting input

– Or controlling the shooter

This set-up, allows you to separate the task of deciding what to

do base on inputs (/auto) and how to do it(/interacting with the 

hardware)

https://en.wikipedia.org/wiki/Separation_of_concerns


Type Def.

• Useful for passing data – both controls and indicators

• Demo



Type Def.

• Useful for passing data – both controls and indicators

• Demo



PID

Closed loop control through PID



PID

• WPI Video:

– https://www.youtube.com/watch?list=PL8BLGj0RyhMzNXX9gHBos

WPRbqqn0gJUQ&v=UOuRx9Ujsog&feature=emb_logo

https://www.youtube.com/watch?list=PL8BLGj0RyhMzNXX9gHBosWPRbqqn0gJUQ&v=UOuRx9Ujsog&feature=emb_logo
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Closed Loop Control

• Open Loop

• Closed Loop

Joystick

Sensor

“Combined” Software Motor controller Robot arm
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• Open Loop

• Closed Loop

– Example

Set Arm 
Position 
to 90 °

Tele-op.vi Motor X Potentiometer

(arm position)



Closed Loop Control - PID

• PID stand for:

– Proportional

– Integral

– Derivative

Set Arm 
Position 
to 90 °

Tele-op.vi Motor X Potentiometer

(arm position)



Closed Loop Control - PID

• PID stand for:

– Proportional

– Integral

– Derivative

Output = Kp E(t) + Ki ∫ E’(t)  + Kd E’(t)
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PID

• Proportional

– Constant multiplied by error (offset)

– The larger this is, the faster the robot approaches the setpoint (smaller 

rise time)

• Integral

– Constant multiplied by integral of all previous error values

– Used to eliminate steady state error (reducing offset after movement)

• Differential

– The larger this is, the less overshoot and settling time (less bounce)

– If too large, 
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PID

• Tuning

– Several methods available

• Ziegler–Nichols*

• Tyreus Luyben

• Cohen–Coon

• Åström-Hägglund

• Manual Tuning* 



PID

• Example code



Questions


