
Advanced LabVIEW

http://workshop.frclabviewtutorials.com

1

Building A Robust Autonomous

• If your robot:

– Is easy to code for auto

– Has the software architected so that auto coding is simple

– Has driver’s that are practiced

You have a mountain of potential to do well.

TODO: fill this in a little more once we get the game for 2019

Notes:
Every year there has been a way to score points for your alliance by just moving

In the past, auto has been the first or second tie-breaker

A consistent auto is worth more than an if-y end game.

In 2016, (Stronghold) robots got 10 points for crossing a defense and 10 points for
scoring in the high goal in auto. A lot of teams that have learned to prioritize Auto got
these consistently.

Let’s say for the sake of argument that they were only 90% consistent. 90% x 20
points is an expected 18 points per match.

On the other hand, that year a team could climb in the end game for 15 points. A lot
of robots had difficulty getting through the match, onto the tower grounds, and
climbing. But even if they were 100% consistent at this, that would only be an
expected 15 points per match (which is less than 18).

2

You might say that’s not a lot less, and it’s not. But in putting in the effort to have a
consistent auto and trained drivers, you can be prepared to widen that gap.

Don’t get me wrong, top teams will do both and have better than 90% success at it,
but in my experience, a lot of teams that could be competitive are not prioritizing
auto enough to compete with the stronger teams.

2

Ingredients

• Quick, effective mechanisms

• Easy to edit

• Use sensors (closed loop control)

• Appropriate sensors to help your robot account for

inconsistencies in field, setup, game pieces, battery level, etc.

Not going to address mechanisms here, this presentation is focused on the software
side of things, but I did feel like we should acknowledge that dependency.

For easy to edit, I’m going to present a way to do a file based autonomous so that you
don’t have to redeploy every time you tweak it.

As well as several example sensors and possible ways that they could be beneficial.

3

EASY TO EDIT

File Based Auto

4

File Based Auto

• https://www.frclabviewtutorials.com/tutorials/filedAuto/

• Objective: Setup a system where I can quickly tweak a setting

and re-run auto and see the difference.

5

File Based Auto

• Demo: creating AutoMove control

Open project and right click on {Target …} and select New -> Control

We will want to add multiple fields to this control, so first add a cluster

Then to that cluster add a distance angle and time numeric controls.

6

File Based Auto

• Get the editing/deploying tool

7

File Based Auto

• Demo: Add EditMoves.vi to my project under “My Computer”

and recallMovesOnRobot.vi under “Team Code” and use in

auto

Back in the project explorer, expand and then right click on “My Computer” and
select “Add” -> “File . . .”
This will open a file dialogue. Use it to select the EditMoves.vi that you just
extracted.

By putting this vi under “My Computer”, you are telling LabVIEW that you want this vi
to run locally.
EditMoves.vi is a utility VI that allows for you to put in your own definition of what an
autonomous move looks like and build an array of such moves for an auton program.
EditMoves will extract xml from the array and store it locally (when save is hit) and
put it on the robot for recallMovesOnRobot.vi to load when your autonomous code
calls it.
Also add recallMovesOnRobot.vi under the Target (maybe even under “Support Code”
or under “Team Code” - it’s up to you).

8

Ingredients

• (NA) Quick, effective mechanisms

• (✓) Easy to edit

• Use sensors (closed loop control)

• Appropriate sensors to help your robot account for

inconsistencies in field, setup, game pieces, battery level, etc.

Next

9

PID

Closed loop control through PID

To close the feedback loop means to bring information from the output of an action
back as an input.

10

Closed Loop Control

• Open Loop:

Image from:
https://www.google.com/url?sa=i&source=imgres&cd=&cad=rja&uact=8&ved=2ahU
KEwiJubyf2sXfAhVMaq0KHXaFApAQjxx6BAgBEAI&url=http%3A%2F%2Finterviewques
tionanswer.com%2Felectrical-engineering%2Fwhat-are-different-types-of-control-
systems&psig=AOvVaw0I1yfTz9-ETIWCxb3uyuvJ&ust=1546195772100247

11

Closed Loop Control

• Open Loop

• Closed Loop

Image from:
https://www.google.com/url?sa=i&source=imgres&cd=&cad=rja&uact=8&ved=2ahU
KEwiJubyf2sXfAhVMaq0KHXaFApAQjxx6BAgBEAI&url=http%3A%2F%2Finterviewques
tionanswer.com%2Felectrical-engineering%2Fwhat-are-different-types-of-control-
systems&psig=AOvVaw0I1yfTz9-ETIWCxb3uyuvJ&ust=1546195772100247

12

Closed Loop Control

• Open Loop

• Closed Loop

– Example

Example:

13

Closed Loop Control

• Open Loop

• Closed Loop

– Example

Move
the arm

I want to move the arm

14

Closed Loop Control

• Open Loop

• Closed Loop

– Example

Move
the arm

Tele-op.vi

So, I tell Teleop to move the arm

15

Closed Loop Control

• Open Loop

• Closed Loop

– Example

Move
the arm

Tele-op.vi Motor X = .25

It tells the motor (motor X) to set to 25%

Did that move the arm at all? Did it move to the position I wanted ??

I don’t know at this point

16

Closed Loop Control

• Open Loop

• Closed Loop

– Example

Set Arm
Position
to 90 °

Tele-op.vi Motor X = .25 Potentiometer

So, let’s put a potentiometer on the arm and change our command to move it to 90 °

Now, Teleop still says to set the motor power to 25%, but the motor will affect the
potentiometer. We can then read that potentiometer in Tele-op to know what the
arm did.

17

Closed Loop Control

• Open Loop

• Closed Loop

– Example

Set Arm
Position
to 90 °

Tele-op.vi Motor X Potentiometer

(arm position)

Which we would diagram something like this (notice that I removed the value the
motor is getting set to because this is now a continuous loop of feedback and the
motor value may change over time).

18

Closed Loop Control - PID

• PID stand for:

– Proportional

– Integral

– Derivative

Set Arm
Position
to 90 °

Tele-op.vi Motor X Potentiometer

(arm position)

PID is a methodology of closed loop feedback/control that allows for fast response
times.

19

Closed Loop Control - PID

• PID stand for:

– Proportional

– Integral

– Derivative

Output = Kp E(t) + Ki ∫ E’(t) + Kd E’(t)

From Wikipedia: A PID controller continuously calculates an error value e(t) as the
difference between a desired setpoint (SP) and a measured process variable (PV) and
applies a correction based on proportional, integral, and derivative terms
(denoted P, I, and D respectively), hence the name.

20

PID

• Proportional

https://en.wikipedia.org/wiki/PID_controller
https://www.youtube.com/watch?v=JEpWlTl95Tw
https://www.youtube.com/watch?v=UR0hOmjaHp0
http://robotics.stackexchange.com/questions/167/what-are-good-strategies-for-
tuning-pid-loops

21

PID

• Proportional

– Constant multiplied by error (offset)

– The larger this is, the faster the robot approaches the setpoint (smaller

rise time)

– If too large, the robot will overshoot the target consistently

The proportional

22

PID

• Proportional

– Constant multiplied by error (offset)

– The larger this is, the faster the robot approaches the setpoint (smaller
rise time)

– If too large, the robot will overshoot the target consistently

• Integral

– Constant multiplied by integral of all previous error values

– The larger this is, the less overshoot and settling time (less bounce)

– If too large, the robot will eventually react to any error violently

Note: a small error long enough eventually produces and integral of significant value
(exponentially approaching infinity), causing the robot to jump into action and
overshoot.

23

PID

• Proportional

– Constant multiplied by error (offset)

– The larger this is, the faster the robot approaches the setpoint (smaller

rise time)

• Integral

– Constant multiplied by integral of all previous error values

– Used to eliminate steady state error (reducing offset after movement)

• Differential

– The larger this is, the less overshoot and settling time (less bounce)

24

PID

• Tuning

25

PID

• Tuning

– Several methods available

• Ziegler–Nichols*

• Tyreus Luyben

• Cohen–Coon

• Åström-Hägglund

• Manual Tuning*

http://faculty.mercer.edu/jenkins_he/documents/TuningforPIDControllers.pdf#page=
6
https://www.youtube.com/watch?v=JEpWlTl95Tw
https://www.youtube.com/watch?v=UR0hOmjaHp0
http://robotics.stackexchange.com/questions/167/what-are-good-strategies-for-
tuning-pid-loops
Ziegler-Nichols: http://robotsforroboticists.com/pid-control/
Manual (page 16):
https://docs.google.com/viewer?a=v&pid=sites&srcid=aGFyZGluZy5lZHV8dGVhbS0z
OTM3fGd4OjUyNzdiNzRkNjkxNjA3MGM

http://www.ni.com/white-paper/3782/en/

26

PID

• Example code

Read the desired angle (a control), and the current angle (from the gyro), bound the
output to [-1, 1], us 1 as the the proportional constant and .01 as the integral
constant – use the result as the steering on Arcade Drive (in effect, a drive straight).

27

Ingredients

• (NA) Quick, effective mechanisms

• (✓) Easy to edit

• (✓) Use sensors (closed loop control)

• Appropriate sensors to help your robot account for

inconsistencies in field, setup, game pieces, battery level, etc.

Next, some examples of effective sensors to use.

28

SENSORS

29

Sensors - Encoder

30

Sensors - Encoder

• Places to use encoders:

– When trying to measure rotational speed

– Trying to measure rotational distances possibly greater than 8

rotations.

– Don’t care about starting position

31

Sensors - Encoder

• Places to use encoders:

– When trying to measure rotation speed

– Trying to measure rotational distances possibly greater than 8

rotations.

– Don’t care about starting position

• Examples:

– Drive train

– Fly Wheel/wheeled shooter

Drive-train
• likely to travel more than 10 rotations in a given match
• Don’t care where the wheels are when starting, and even better – the robots

starting position is 0 (good)

Fly Wheel
• Don’t care what position it starts in
• Likely to rotate more than 10 rotations in a match
• Care is primarily about speed

32

Sensors - Encoder

• Reading

33

Sensors - Encoder

• Control

34

Sensors - Potentiometer

TODO: Code

35

Sensors - Potentiometer

• Places to use potentiometers:

– Trying to measure rotational distances less than 8 rotations.

– Care about starting position – or absolute positions

• Examples:

– Arm angles

– Elevator positions

Arm angles:
• Care about absolute position (0 should always mean on the ground regardless of

where the arm was when we turn it on).

Same for elevators and similar manipulators

36

Sensors - Potentiometer

• Control

37

Sensors - Potentiometer

• Note:

– Easy way to make potentiometer relative to a known point:

https://www.frclabviewtutorials.com/tutorials/sensors/roborio/pot

entiometer/

One disadvantage that potentiometers have when compared to encoders is now you
care very much about the position of the potentiometer when mounting/unmounting
it.

I’m not going to go into this today, but there is a documented, simple way to apply a
known offset when reading potentiometers – you would then update this offset after
doing modifications.

38

Sensors - Gyro

39

Sensors - Gyro

• Places to use a Gyro:

– When trying to drive perfectly straight

– When trying to turn to specific angles (especially in auto)

40

Sensors - Gyro

• Control

41

Sensors - Other

• https://www.frclabviewtutorials.com/tutorials/sensors/dashboar

d/arduino/

42

Demo

43

Questions

44

