Intro to LabVIEW

frclabviewtutorials.com/workshop

Block Diagram

Untitled 1 Block Diagram on 2015 Robot Project.ivproy/Target *
[File Edit View Project Operate Tools Window Help
\ =3 @ n||elee loo’G’ r | 15pt Application Font |+

Boolean

Terminals
te

Enable Vision

i Controls
$&‘2

Finish

Indicators

[2015 Robot Project.vproy/Target «

Demo

Adding controls and indicators

Demo

Adding controls and indicators

Data Flow

LabVIEW follows a dataflow model for running Vis

* A node executes only when data 1s available at all of
its required input terminals.

* A node supplies data to the output terminals only
when the node finishes execution.

Number 1

When a node executes, it produces output data and passes the data to the next node
in the dataflow path.

The movement of data through the nodes determines the execution order of the Vls
and functions on the block diagram.

LabVIEW does NOT use a control flow program execution model like Visual Basic,
C++, JAVA, and most other text-based programming languages. In a control flow
model, the sequential order of program elements determines the execution order of
a program.

Demo - Setting a motor

* Read Joystick
* Set Drive motors

Demo - Setting a motor

* Read Joystick
* Set Drive motors

Case Structures

Have two or more sub diagrams or cases.

Use an input value to determine which case to
execute.

Execute and display only one case at a time.
Are similar to case statements or if...then...else

statements in text-based programming languages.

M True ~p

Square Root Square Root Value
pobL

Casestructure.vi and select.vi

10

Case Structures

* Input and Output Tunnels
— You can create multiple input and output tunnels.
— Input tunnels are available to all cases if needed.
— You must define each output tunnel for each case.*

Repetition

* While Loop

Repetition
* While Loop

— Iteration terminal
* Returns number of times loop has executed.
* Is zero-indexed.

Iteration Terminal

1 Continue if True

[l

Repetition

* While Loop

— Conditional terminal
* Defines when the loop stops.
* Has two options.

— Stopif True Iteration Terminal
— Contmue if True 1 Conditional Terminal

Continue if True

[l

Repetition

* While Loop

— Tunnels transfer data
into and out of
structures.

Enable

Repetition

* While Loop

— Tunnels transfer data
into and out of
structures.

— Data pass out of a
loop after the loop (o
terminates.

Repetition

* While Loop

— Tunnels transfer data into
and out of structures.

— Data pass out of a loop

after the loop terminates.

Enabl
— When a tunnel passes

data into a loop, the loop
executes only after
data arrives at the tunnel.

Repetition

*While Loop - Demo

18

Repetition

* While Loop
* For Loop

Repetition

* While Loop
* For Loop

& Count Terminal

* Comparison

— Description Repetltlon

 For the following scenarios, decide whether to use a While Loop or a For Loop.

* Comparison

L L
- Repetition
— Description
» For the following scenarios, decide whether to use a While Loop or a For Loop.

— Scenario 1
» Acquire sensor data in a loop that runs once per second for 15s (autonomous).
» 1. If you use a While Loop, what is the condition that you need to stop the loop?
» 2. Ifyou use a For Loop, how many iterations does the loop need to run?
+ 3. Is it easier to implement a For Loop or a While Loop?

Comparison Repetition

— Description

* For the following scenarios, decide whether to use a While Loop or a For Loop.

— Scenario 1
Acquire sensor data in a loop that runs once per second for 15s (autonomous).
1. If you use a While Loop, what is the condition that you need to stop the loop?
. If you use a For Loop, how many iterations does the loop need to run?
3. Is it easier to implement a For Loop or a While Loop?

— Scenario 2
» Acquire gyro until it reads less than 15°

. If you use a While Loop, what is the condition that you need to stop the loop?
. If you use a For Loop, how many iterations does the loop need to run?

. Is 1t easier to implement a For Loop or a While Loop?

* Comparison

— Scenario 3 Repetltlon

Read both joysticks until they are both negative

1. If you use a While Loop, what is the condition that you need to stop the loop?
2. If you use a For Loop, how many iterations does the loop need to run?

3. Is it easier to implement a For Loop or a While Loop?

Comparison

— Scenario 3 Repetltlon

» Read both joysticks until they are both negative
. If you use a While Loop, what is the condition that you need to stop the loop?
. If you use a For Loop, how many iterations does the loop need to run?

1
)
3. Is it easier to implement a For Loop or a While Loop?

— Scenario 4

Control a motor ramp starting at zero, increasing incrementally by 0.01 every
second, until the output value reaches 1

. If you use a While Loop, what is the condition that you need to stop the loop?
. If you use a For Loop, how many iterations does the loop need to run?

. Is 1t easier to implement a ForLoop or a While Loop?

1
2
3

FRC Arhitecture

28

FRC Arhitecture

Show it

29

FRC Arhitecture

* Begin
—Create references for all joysticks, motors, and
Sensors
—Runs at power up

30

FRC Arhitecture

31

FRC Arhitecture

32

FRC Arhitecture

* Begin
* Teleop
—Primarily used to read joysticks and set drive
motors and actuators
—Only runs while Teleop enabled

33

FRC Arhitecture

* Begin
* Teleop
* Autonomous

34

FRC Arhitecture

* Begin
* Teleop
* Autonomous

35

FRC Arhitecture

* Begin
* Teleop

* Autonomous
—Runs when Autonomous is enabled

36

FRC Arhitecture

* Begin

* Teleop

* Autonomous
* Timed Tasks

37

FRC Arhitecture

* Begin

* Teleop

* Autonomous
* Timed Tasks

38

FRC Arhitecture

* Begin

* Teleop

* Autonomous
* Timed Tasks

—Runs once enabled (during both auto and teleop)

39

FRC Deploying Code

 Run From Main

Open Main.vi (from project) — click the run buton

40

FRC Deploying Code

 Run From Main
* Deploy

Deploying the robot code puts it on the robot — causing it to take effect on next
reboot (or after Run as startup)

41

FRC Deploying Code

* Run From Main
* Deploy
* Run as Startup

Run as startup puts the code on the roborio in a temporary location and starts it
running (does not persist across reboots).

42

Debugging Techniques

* Correcting Broken VI’s

13 Ervor tist

Items with errors
Untitled 2

2 errors and warnings
@ Block Diagram Errors
While Loop: conditional terminal is not wared

Details

These cannot be wired together because their data types (numeric, string, array, cluster,
etc.) do not match. Show the Context Help window to see what data type is required.
The type of the source is double [64-bit real (~15 digit precision)].

The type of the sink is cluster of 3 elements.

] l Show Error] [

Debugging Techniques

* Correcting Broken VI’s
— Broken Wires Exist (e.g.)

* You wired a Boolean control to a String indicator.
* You wired a numeric control to a numeric control.

Untitled1.vi

44

Debugging Techniques

* Correcting Broken VI’s
— Broken Wires Exist (e.g.)

* You wired a Boolean control to a String indicator.

* You wired a numeric control to a numeric control.

— A required block diagram terminal is unwired.

Untitled1.vi

45

Debugging Techniques

* Correcting Broken VI’s
— Broken Wires Exist (e.g.)

* You wired a Boolean control to a String indicator.

* You wired a numeric control to a numeric control.

— A required block diagram terminal is unwired.

— A subVI is broken

Untitled1.vi

46

Debugging Techniques

* Correcting Broken VI’s

* Correcting Dataflow
— Execution Highlighting
— Single-Stepping & Breakpoints
— Probes

untitled1

47

Debugging Techniques

* Correcting Broken VI’s

* Correcting Dataflow
— Are there any unwired or hidden subVIs?
— Is the default data correct?
— Does the VI pass undefined data?
— Are numeric representations correct?

— Are nodes executed 1n the correct order?

Terminals and LabVIEW datatypes

Seconds
»

Minutes
» o

Total Time in Seconds

|.; o H
DBL » ’ﬁ:ll's

Warning

|> o
IDelay 1 hour or IongerM Message

Terminal colors, text, arrow direction, and border thickness all provide visual
information about the terminal.

For example, Orange represents floating point numbers. DBL indicates a
double-precision floating point number.

Terminals with thick borders with arrows on the right are control terminals.
Terminals with thin borders with arrows on the left are indicator terminals.

49

Data Feedback in Loops
 Shift Registers

— When programming with loops, you often need to
know the values of data from previous iterations of
the loop.

— Shift registers transfer values from one loop
iteration to the next.

50

Documentation

[This is a free Label]

This is an owned label
® Free Lab elS > This is another owned label >

Documentation

[This is a free Label]

This is an owned label
® Free Lab elS > This is another owned label >

— Describe algorithms.

— Have pale yellow backgrounds.
— Double-click in any open space to create.

Documentation

[This is a free Label]

This is an owned label
® Free Lab elS > This is another owned label >

— Describe algorithms.

— Have pale yellow backgrounds.
— Double-click in any open space to create.

Documentation

[This is a free Label]

* Free Labels) ii—— TS
* Owned Labels

— Explain data contents of wires and objects.

— Move with object.

— Have transparent backgrounds.

— Select Visible Items»Label from the shortcut menu
to create.

Documentation

[This is a free Label]

* Free Labels) ii—— TS
* Owned Labels

— Explain data contents of wires and objects.

— Move with object.

— Have transparent backgrounds.

— Select Visible Items»Label from the shortcut menu
to create.

Documentation

* Free Labels
* Owned Labels

. Sub diagram Labels

Celsius”, Default ~
Celsius - convert to Farenheit

C>F"

> Temperature in C > > Temperature in F >

Documentation

* Free Labels
* Owned Labels
* Sub diagram Labels

— Case Structures

Average last 5 temperatures
Current Temp

|: [RRER 2 <

Documentation

Free Labels

Owned Labels

Sub diagram Labels
White Papers

Documentation

IR Based Line Following

This document describes:
1. Assumptions about robot construction
2. Information about mounting, wiring, and calibrating the IR sensors
3. How the control code operates
4. How to troubleshoot and tune the sample code to work after robots are
modified and no longer meet the assumptions

1. Assumptions about Robot Construction
Six-wheel drop-center skid-steer robot with gray wheels eight inches in diameter
PWM channel 1 controls the left center wheel
PWM channel 2 controls the right center wheel
Left and right motors are both controlled by Jaguar motor controllers with the
jumper set to brake mode
IR sensors are rigidly mounted on the front-center of the robot relatively far
from the center of rotation and about two inches above the carpet
The active portion of the sensors face the carpet and are connected to digital
input signals 1, 2, and 3 in slot four and are wired to appropriate power and
ground signals

(Note that for general driving, you may want to switch the mode to coast. You can
accomplish this using a digital output or you can retune the control code so that it
works with the jumper set to coast.)

Keyboard Shortcuts

CTRL + u = diagram cleanup
Right Click = palette

CTRL + Space = quick drop

CTRL + e = switch window

CTRL + Shift + e = activate project window
CTRL +r=Run

CTRL + t = split window

