
Intro to LabVIEW

frclabviewtutorials.com/workshop

Front Panel

Controls

Indicators

Block Diagram

Controls

Indicators

Terminals

Demo

Adding controls and indicators

Demo

Adding controls and indicators

Data Flow

LabVIEW follows a dataflow model for running Vis

• A node executes only when data are available at all of

its required input terminals.

• A node supplies data to the output terminals only

when the node finishes execution.

Demo - Setting a motor

• Read Joystick

• Set Drive motors

Demo - Setting a motor

• Read Joystick

• Set Drive motors

Exercise

Drive a motor.pdf

Case Structures

• Have two or more sub diagrams or cases.

• Use an input value to determine which case to

execute.

• Execute and display only one case at a time.

• Are similar to case statements or if...then...else

statements in text-based programming languages.

Case Structures

• Input and Output Tunnels

– You can create multiple input and output tunnels.

– Input tunnels are available to all cases if needed.

– You must define each output tunnel for each case.

Repetition

• While Loop

Repetition

• While Loop

– Iteration terminal

• Returns number of times loop has executed.

• Is zero-indexed.

Iteration Terminal

Repetition

• While Loop

– Conditional terminal

• Defines when the loop stops.

• Has two options.

– Stop if True

– Continue if True Conditional Terminal

Iteration Terminal

Repetition

• While Loop

– Tunnels transfer data

into and out of

structures.

Repetition

• While Loop

– Tunnels transfer data

into and out of

structures.

– Data pass out of a

loop after the loop

terminates.

Repetition

• While Loop

– Tunnels transfer data into

and out of structures.

– Data pass out of a loop

after the loop terminates.

– When a tunnel passes

data into a loop, the loop

executes only after

data arrives at the tunnel.

Exercise – While Loops

While Loops.pdf

Exercise – While Loops

• How many times is the Number of Iterations

indicator updated? Why?

Repetition

• While Loop

• For Loop

Repetition

• While Loop

• For Loop

– Count Terminal

Repetition• Comparison

– Description
• For the following scenarios, decide whether to use a While Loop or a For Loop.

Repetition• Comparison

– Description
• For the following scenarios, decide whether to use a While Loop or a For Loop.

– Scenario 1

• Acquire pressure data in a loop that executes once per second for one minute.

• 1. If you use a While Loop, what is the condition that you need to stop the loop?

• 2. If you use a For Loop, how many iterations does the loop need to run?

• 3. Is it easier to implement a For Loop or a While Loop?

Repetition• Comparison

– Description
• For the following scenarios, decide whether to use a While Loop or a For Loop.

– Scenario 1

• Acquire pressure data in a loop that executes once per second for one minute.

• 1. If you use a While Loop, what is the condition that you need to stop the loop?

• 2. If you use a For Loop, how many iterations does the loop need to run?

• 3. Is it easier to implement a For Loop or a While Loop?

– Scenario 2

• Acquire pressure data until the pressure is greater than or equal to 1400 psi.

• 1. If you use a While Loop, what is the condition that you need to stop the loop?

• 2. If you use a For Loop, how many iterations does the loop need to run?

• 3. Is it easier to implement a For Loop or a While Loop?

Repetition
• Comparison

– Scenario 3
• Acquire pressure and temperature data until both values are stable for two minutes.

• 1. If you use a While Loop, what is the condition that you need to stop the loop?

• 2. If you use a For Loop, how many iterations does the loop need to run?

• 3. Is it easier to implement a For Loop or a While Loop?

Repetition
• Comparison

– Scenario 3
• Acquire pressure and temperature data until both values are stable for two minutes.

• 1. If you use a While Loop, what is the condition that you need to stop the loop?

• 2. If you use a For Loop, how many iterations does the loop need to run?

• 3. Is it easier to implement a For Loop or a While Loop?

– Scenario 4
• Output a voltage ramp starting at zero, increasing incrementally by 0.5 V every

second, until the output voltage is equal to 5 V.

• 1. If you use a While Loop, what is the condition that you need to stop the loop?

• 2. If you use a For Loop, how many iterations does the loop need to run?

• 3. Is it easier to implement a For Loop or a While Loop?

FRC Arhitecture

• Begin

FRC Arhitecture

• Begin

FRC Arhitecture

• Begin
–Create references for all joysticks, motors, and

sensors

–Runs at power up

FRC Arhitecture

• Begin

• Teleop

FRC Arhitecture

• Begin

• Teleop

FRC Arhitecture

• Begin

• Teleop
–Primarily used to read joysticks and set drive

motors and actuators

–Only runs while Teleop enabled

FRC Arhitecture

• Begin

• Teleop

• Autonomous

FRC Arhitecture

• Begin

• Teleop

• Autonomous

FRC Arhitecture

• Begin

• Teleop

• Autonomous
–Runs when Autonomous is enabled

FRC Arhitecture

• Begin

• Teleop

• Autonomous

• Timed Tasks

FRC Arhitecture

• Begin

• Teleop

• Autonomous

• Timed Tasks

FRC Arhitecture

• Begin

• Teleop

• Autonomous

• Timed Tasks
–Runs once enabled (during both auto and teleop)

Debugging Techniques

• Correcting Broken VI’s

Debugging Techniques

• Correcting Broken VI’s

– Broken Wires Exist

• You wired a Boolean control to a String indicator.

• You wired a numeric control to a numeric control.

Debugging Techniques

• Correcting Broken VI’s

– Broken Wires Exist

• You wired a Boolean control to a String indicator.

• You wired a numeric control to a numeric control.

– A required block diagram terminal is unwired.

Debugging Techniques

• Correcting Broken VI’s

– Broken Wires Exist

• You wired a Boolean control to a String indicator.

• You wired a numeric control to a numeric control.

– A required block diagram terminal is unwired.

– A subVI is broken

Debugging Techniques

• Correcting Broken VI’s

• Correcting Dataflow

– Execution Highlighting

– Single-Stepping & Breakpoints

– Probes

Debugging Techniques

• Correcting Broken VI’s

• Correcting Dataflow

– Are there any unwired or hidden subVIs?

– Is the default data correct?

– Does the VI pass undefined data?

– Are numeric representations correct?

– Are nodes executed in the correct order?

Terminals and LabVIEW datatypes

Data Feedback in Loops

• Shift Registers

– When programming with loops, you often need to

know the values of data from previous iterations of

the loop.

– Shift registers transfer values from one loop

iteration to the next.

Documentation

• Free Labels

Documentation

• Free Labels

– Describe algorithms.

– Have pale yellow backgrounds.

– Double-click in any open space to create.

Documentation

• Free Labels

– Describe algorithms.

– Have pale yellow backgrounds.

– Double-click in any open space to create.

Documentation

• Free Labels

• Owned Labels

– Explain data contents of wires and objects.

– Move with object.

– Have transparent backgrounds.

– Select Visible Items»Label from the shortcut menu

to create.

Documentation

• Free Labels

• Owned Labels

– Explain data contents of wires and objects.

– Move with object.

– Have transparent backgrounds.

– Select Visible Items»Label from the shortcut menu

to create.

Documentation

• Free Labels

• Owned Labels

• Sub diagram Labels

– Case Structures

Documentation

• Free Labels

• Owned Labels

• Sub diagram Labels

– Case Structures

– Loops

Documentation

• Free Labels

• Owned Labels

• Sub diagram Labels

• White Papers

Documentation

• Free Labels

• Owned Labels

• Sub diagram Labels

• White Papers

Keyboard Shortcuts

• CTRL + u = diagram cleanup

• Right Click = palette

• CTRL + Space = quick drop

• CTRL + e = switch window

• CTRL + Shift + e = activate project window

• CTRL + r = Run

• CTRL + t = split window

Advanced LabVIEW

frclabviewtutorials.com/workshop

Let LabVIEW do the work!

TypeDefs

Demo

TypeDefs - Teleop Optimization

Demo

TypeDefs - Teleop Optimization

Let LabVIEW do the work!

TypeDefs

Functional Global Variable (FGV)

Variables

How would you handle the following dataflow

challenges?
• Initialize front panel controls with values from a configuration file?

• Copy a “Ship To” address to a “Bill To” address?

• Initialize indicators that will be written to later in your code?

• Write to an indicator in two cases of a Case structure without

writing to it in all cases?

Variables

Variables can be of the following types:

• Local—Stores data in front panel controls and

indicators.

Local Variables

• Use local variables to pass data within a single

VI.

Local Variables

• Use local variables to pass data within a single

VI.

• Use local variables to modify front panel

control values.

Local Variables - Demo

• Race Conditions

Local Variables Exercise

• Local Variable Exercise.pdf

Variables

Variables can be of the following types:

• Local—Stores data in front panel controls and

indicators.

• Global —Stores data in special repositories that

can be accessed from multiple VIs.

Global Variable

• Store data

• Can be accessed across the entire project

Variables

Variables can be of the following types:

• Local—Stores data in front panel controls and

indicators.

• Global —Stores data in special repositories that

can be accessed from multiple VIs.

• Functional Global—Stores data in While Loop

shift registers.

Functional Global Variable

• Store Data

• Can be accessed across the entire project

• Can perform operations on the data

• Used to avoid read/write race conditions

• Used to implement custom boundaries on data

FGV

Implemented with a shift register

Shift Registers

• Right-click the border and select Add Shift

Register from the shortcut menu.

• Right shift register stores data on completion

of an iteration.

• Left shift register provides stored data at

beginning of the next iteration.

Shift Registers
Block Diagram 1st run 2nd run

Initialized
Shift
Register

Output = 5 Output = 5

Not
Initialized
Shift
Register

Output = 4 Output = 8

Shift Registers

• Default Values
Data Type Default Value

Numeric 0

Boolean FALSE

String Empty

Shift Registers
• Stacked shift registers remember values from

multiple previous iterations and carry those

values to the next iterations.

Shift Registers
• Stacked shift registers remember values from

multiple previous iterations and carry those

values to the next iterations.

• Right-click the left shift register and select

Add Element from the shortcut menu to stack a

shift register.

Shift Registers
• Stacked shift registers remember values from

multiple previous iterations and carry those

values to the next iterations.

• Right-click the left shift register and select

Add Element from the shortcut menu to stack a

shift register.

FGV

Functional Global Variable Code

Implementing An FGV

FGV - Demo

Demo - Shooter Speed

Demo

• Parallel Loop Paradigm

Variables
Variables can be of the following types:

• Local—Stores data in front panel controls and
indicators.

• Global —Stores data in special repositories that can
be accessed from multiple VIs.

• Functional Global—Stores data in While Loop
shift registers.

• Shared—Transfers data between various distributed
targets connected together over a network.

Readable Code

Enums

Enums

• Control – menu

• Constant – readable code

• Example

Enums

• Control – menu

• Constant – readable code

• Example

Timer - Demo

• FGV

• Enums

Timer - Demo

• FGV

• Enums

Questions

Auto Wire and Auto Index

• Auto Wire

– Useful to quickly connect unchanged values in

loop or case structure

Auto Wire and Auto Index

• Auto Wire

– Useful to quickly connect unchanged values in

loop or case structure

• Auto Index

– Primarily for reading or creating arrays

Auto Wire and Auto Index

• Auto Wire

– Useful to quickly connect unchanged values in

loop or case structure

• Auto Index

– Primarily for reading or creating arrays

VI Properties

• SR Flip Flop Demo

VI Properties

• SR Flip Flop Demo

– Edge Detector

Architectures

• State Machine

Architectures

• State Machine

Architectures

• State Machine

Architectures

• State Machine

• Producer-Consumer

– Parallel loops

• First creating data or instructions

• Other handling

Architectures

• State Machine

• Producer-Consumer

– Parallel loops

– Use either queue or fgv

Producer Consumer Demo

Type Def.

• Useful for passing data – both controls and

indicators

• Demo

Type Def.

• Useful for passing data – both controls and

indicators

• Demo

Advanced Debugging Tools

• VI Profiler

– Tools>>Profile>>Performance and Memory

OOP and LVOOP

• Object Oriented Programming

– Used in C++, C#, Java, Python, etc.

– A method of grouping where

• An object represents the data

• Has attributes and/or properties

• Has methods that act on the object and its properties

• LVOOP is OOP in LabVIEW

LVOOP

• Demos – custom motor control

LVOOP

• Demos – custom motor control

– Create a class

LVOOP

• Demos – custom motor control

– Create a class

– Create methods

LVOOP

• Demos – custom motor control

– Create a class

– Create methods

– Create an object

Demo

Auto Wire & Auto Index

