Intro to LabVIEW

frclabviewtutorials.com/workshop

Robot Main.vi Front Panel on 2015 Robot Project.ivproj/Target ®

File Edit View Project Operate Tools Window Help

|ﬁ> |@| E ‘ 15pt Application Font |~ || e~ ||~ Hgv

Boolean

Enable Vision

Image Size

Finish Indicators

2015 Robot Project.vproj/Target| «

Block Diagram

{Z} Untitled 1 Block Diagram on 2015 Robot Project.lvproj/Target *

File Edit View Project Operate Tools

Window Help

o> |Er OE |H|:||'E' 3 | 15pt Application Font |~ ||E;.'r ”-T;Ev | |@ﬁv |

| Search "1\ |
Enable Visi Termlnals Boolean

-

Image Size ContrC)lS
oy

Finish

Indicators

2015 Robot Project.lvproj/Target «

Data Flow

LabVIEW follows a dataflow model for running Vis

* A node executes only when data are available at all of
Its required input terminals.

« A node supplies data to the output terminals only
when the node finishes execution.

Murnber 1

|CoscH

Resulk
'_ FDEL j]

[oEiy [=

Demo - Setting a motor

* Read Joystick
e Set Drive motors

Demo - Setting a motor

* Read Joystick
e Set Drive motors

Case Structures

Have two or more sub diagrams or cases.

Use an input value to determine which case to
execute.

Execute and display only one case at a time.

Are similar to case statements or If...then...else
statements In text basedprogrammlng languages.

Case Structures

* Input and Output Tunnels
— You can create multiple input and output tunnels.
— Input tunnels are available to all cases if needed.
— You must define each output tunnel for each case.

Repetition
» While Loop

Repetition

* While Loop

— |teration terminal
 Returns number of times loop has executed.
* |Is zero-indexed.

Ilteration Terminal

l Conktinue if True

n

Repetition

* While Loop

— Conditional terminal
 Defines when the loop stops.
 Has two options.

— Stop if True lteration Terminal
— Continue if True l Conditional Terminal

}

—anktinue iF True

n

Repetition
* While Loop

— Tunnels transfer data
Into and out of
structures.

Repetition
* While Loop

— Tunnels transfer data
Into and out of
structures.

— Data pass out of a
loop after the loop
terminates.

Repetition
* While Loop

— Tunnels transfer data into
and out of structures.

— Data pass out of a loop
after the loop terminates.

— When a tunnel passes
data into a loop, the loop
executes only after
data arrives at the tunnel.

Exercise — While Loops

* How many times Is the Number of lterations
Indicator updated? Why?

Repetition

* While Loop
* For Loop

« Comparison

— Description
* For the fc p or a For Loop.

« Comparison

— Description Repetlthn

 For the following scenarios, decide whether to use a While Loop or a For Loop.

— Scenario 1

» Acquire pressure data in a loop that executes once per second for one minute.

« 1. If you use a While Loop, what is the condition that you need to stop the loop?
« 2. If you use a For Loop, how many iterations does the loop need to run?

« 3. Is it easier to implement a For Loop or a While Loop?

« Comparison Repet|t|0n
— Description
 For the following scenarios, decide whether to use a While Loop or a For Loop.

— Scenario 1

» Acquire pressure data in a loop that executes once per second for one minute.

« 1. If you use a While Loop, what is the condition that you need to stop the loop?
« 2. If you use a For Loop, how many iterations does the loop need to run?

« 3. Is it easier to implement a For Loop or a While Loop?

— Scenario 2

» Acquire pressure data until the pressure iIs greater than or equal to 1400 psi.

« 1. If you use a While Loop, what is the condition that you need to stop the loop?
» 2. If you use a For Loop, how many iterations does the loop need to run?

« 3. Is it easier to implement a For Loop or a While Loop?

« Comparison

— Scenario 3 Repetltlon

 Acquire pressure and temperature data until both values are stable for two minutes.
« 1. If you use a While Loop, what is the condition that you need to stop the loop?

« 2. If you use a For Loop, how many iterations does the loop need to run?

« 3. Is it easier to implement a For Loop or a While Loop?

« Comparison

— Scenario 3 Repetltlon

 Acquire pressure and temperature data until both values are stable for two minutes.
« 1. If you use a While Loop, what is the condition that you need to stop the loop?

« 2. If you use a For Loop, how many iterations does the loop need to run?

« 3. Is it easier to implement a For Loop or a While Loop?

— Scenario 4

 Qutput a voltage ramp starting at zero, increasing incrementally by 0.5 V every
second, until the output voltage is equal to 5 V.

« 1. If you use a While Loop, what iIs the condition that you need to stop the loop?

« 2. If you use a For Loop, how many iterations does the loop need to run?

» 3. IS it easier to implement a For Loop or a While Loop?

FRC Arhitecture

* Begin
—Create references for all joysticks, motors, and
Sensors
—Runs at power up

FRC Arhitecture

* Begin
* Teleop
—Primarily used to read joysticks and set drive

motors and actuators
—Only runs while Teleop enabled

FRC Arhitecture

* Begin
* Teleop

e Autonomous
—Runs when Autonomous Is enabled

FRC Arhitecture

* Begin

* Teleop
 Autonomous
* Timed Tasks

FRC Arhitecture

* Begin

* Teleop
 Autonomous
* Timed Tasks

FRC Arhitecture

* Begin
* Teleop
* Autonomous

* Timed Tasks
—Runs once enabled (during both auto and teleop)

Debugging Techniques

* Correcting Broken VI’s

13 Error list

Debugging Technigues

* Correcting Broken VI’s

— Broken Wires Exist
* You wired a Boolean control to a String indicator.
* You wired a numeric control to a numeric control.

Debugging Technigues

* Correcting Broken VI’s

— Broken Wires Exist
* You wired a Boolean control to a String indicator.
* You wired a numeric control to a numeric control.

— A required block diagram terminal Is unwired.

Debugging Technigues

* Correcting Broken VI’s

— Broken Wires Exist
* You wired a Boolean control to a String indicator.
* You wired a numeric control to a numeric control.

— A required block diagram terminal Is unwired.
— A subVI is broken

Debugging Technigues

* Correcting Broken VI’s

 Correcting Dataflow
— Execution Highlighting
— Single-Stepping & Breakpoints
— Probes

Debugging Technigues

* Correcting Broken VI’s

 Correcting Dataflow
— Are there any unwired or hidden subVIs?
— Is the default data correct?
— Does the VI pass undefined data?
— Are numeric representations correct?
— Are nodes executed in the correct order?

Terminals and LabVIEW datatypes

Seconds

FOBL |

ﬂ Minutes
FOEL ||
Total Tirme 1in Seconds E

[DBL ¥ Hours

FOEL |
Warning

Delay 1 howur or longer Message

Delay less than 1 hour

Data Feedback In Loops

 Shift Registers

— When programming with loops, you often need to
know the values of data from previous iterations of
the loop.

— Shift registers transfer values from one loop
Iteration to the next.

Documentatlon

° F ree Labe I S S - > This is another owned label > — @-

Documentatlon

* Free Labels -+ s s amother owned tabet » (@)
— Describe algorithms. |
— Have pale yellow backgrounds.
— Double-click In any open space to create.

Documentatlon

* Free Labels -+ s s amother owned tabet » (@)
— Describe algorithms. |
— Have pale yellow backgrounds.
— Double-click In any open space to create.

Documentatlon

° F ree Labe I S S - > This is another owned label > — @)

* Owned Labels
— Explain data contents of wires and objects.
— Move with object.
— Have transparent backgrounds.

— Select Visible Items»Label from the shortcut menu
to create.

Documentatlon

° F ree Labe I S S - > This is another owned label > — @)

* Owned Labels
— Explain data contents of wires and objects.
— Move with object.
— Have transparent backgrounds.

— Select Visible Items»Label from the shortcut menu
to create.

Documentation

* Free Labels
 Owned Labels
. Sub dlagram Labels

Documentation

* Free Labels
 Owned Labels

« Sub diagram Labels
k Case Structures

Average last 5 temperatures

Current Temp
Average

Documentation

Free Labels

Owned Labels

Sub diagram Labels
White Papers

Documentation

IR Based Line Followin

This document describes:
1. Assumptions about robot construction
2. Information about mounting, wiring, and calibrating the IR sensors
3. How the control code operates
4. How to troubleshoot and tune the sample code to work after robots are
modified and no longer meet the assumptions

1. Assumptions about Robot Construction
Six-wheel drop-center skid-steer robot with gray wheels eight inches in diameter
PWM channel 1 controls the left center wheel
PWM channel 2 controls the right center wheel
Left and right motors are both controlled by Jaguar motor controllers with the
jumper set to brake mode
IR sensors are rigidly mounted on the front-center of the robot relatively far
from the center of rotation and about two inches above the carpet
The active portion of the sensors face the carpet and are connected to digital
input signals 1, 2, and 3 in slot four and are wired to appropriate power and
ground signals

(Note that for general driving, you may want to switch the mode to coast. You can
accomplish this using a digital output or you can retune the control code so that it
works with the jumper set to coast.)

Keyboard Shortcuts

CTRL + u = diagram cleanup
Right Click = palette

CT
CT
CT
CT
CT

RL + Space = quick drop

RL + e = switch window

RL + Shift + e = activate project window
RL +r=Run

RL + t = split window

Advanced LabVIEW

frclabviewtutorials.com/workshop

et LabVIEW do the work!

TypeDefs
Functional Global Variable (FGV)

Variables

How would you handle the following dataflow

challenges?
« [Initialize front panel controls with values from a configuration file?
* Copy a “Ship To” address to a “Bill To” address?
* Initialize indicators that will be written to later in your code?

* \Write to an Indicator In two cases of a Case structure without
writing to it in all cases?

Variables

Variables can be of the following types:

» Local—Stores data in front panel controls and
Indicators.

_ocal Variables

» Use local variables to pass data within a single

Stop Button

[[— R

_ocal Variables

» Use local variables to pass data within a single
VI.

» Use local variables to modify front panel
control values. |

Threshold Level Gauge

[(oEiE FOBL |

Stop Button

|_ocal VVariables Exercise

 Local Variable Exercise.pdf

Variables

Variables can be of the following types:
» Local—Stores data in front panel controls and
Indicators.

* Global —Stores data in special repositories that
can be accessed from multiple VIs.

Global Variable

 Store data
« Can be accessed across the entire project

Variables

Variables can be of the following types:

» Local—Stores data in front panel controls and
Indicators.

* Global —Stores data in special repositories that
can be accessed from multiple VIs.

* Functional Global—Stores data in While Loop
shift registers.

Functional Global VVariable

Store Data

Can be accessed across the entire project

Can perform operations on the data

Used to avoid read/write race conditions

Used to implement custom boundaries on data

Shift Registers

 Right-click the border and select Add Shift
Register from the shortcut menu.

 Right shift register stores data on completion
of an iteration.

* Left shift register provides stored data at
beginning of the next iteration.

Shift Registers

Block Diagram 1st run 2nd run
Initialized
Shift utput Output =5 Output =5
Register
Not
Initialized CIubpuUt Output = 4 Output=38
Shift

Register

Shift Registers

 Default VValues

Data Type Default Value
Numeric 0
Boolean FALSE

String Empty

Shift Registers

« Stacked shift registers remember values from
multiple previous iterations and carry those
values to the next Iterations.

Shift Registers

« Stacked shift registers remember values from
multiple previous iterations and carry those
values to the next Iterations.

 Right-click the left shift register and select
Add Element from the shortcut menu to stack a
shift register.

Shift Registers

« Stacked shift registers remember values from
multiple previous iterations and carry those
values to the next Iterations.

 Right-click the left shift register and select
Add Element from the shortcut menu to stack a
shift register.

Functional Global Variable Code

Chutput

Implementing An FGV

Inpuk

Enum
[

Variables can be of%g'lroll%vt\)/l]r%stypes:

 Local—Stores data in front panel controls and
Indicators.

* Global —Stores data in special repositories that can
be accessed from multiple VIs.

« Functional Global—Stores data in While Loop
shift registers.

« Shared—Transfers data between various distributed
targets connected together over a network.

Auto Wire and Auto Index

o Auto Wire

— Useful to quickly connect unchanged values in
loop or case structure

Auto Wire and Auto Index

o Auto Wire

— Useful to quickly connect unchanged values in
loop or case structure

« Auto Index
— Primarily for reading or creating arrays

Auto Wire and Auto Index

o Auto Wire

— Useful to quickly connect unchanged values in
loop or case structure

« Auto Index
— Primarily for reading or creating arrays

Architectures

e State Machine

Architectures

e State Machine

Architectures

e State Machine

Architectures

e State Machine

* Producer-Consumer

— Parallel loops
* First creating data or instructions
 Other handling

Architectures

e State Machine

* Producer-Consumer
— Parallel loops
— Use either queue or fgv

Type Def.

 Useful for passing data — both controls and
Indicators

e Demo

Type Def.

 Useful for passing data — both controls and
Indicators

e Demo

Advanced Debugging Tools

* VI Profiler
— Tools>>Profile>>Performance and Memory

OOP and LVVOOP

* Object Oriented Programming
— Used in C++, C#, Java, Python, etc.

— A method of grouping where
« An object represents the data
 Has attributes and/or properties
« Has methods that act on the object and its properties

e LVVOOP 1s OOP In LabVIEW

LVOOP

« Demos — custom motor control
— Create a class
— Create methods

LVOOP

 Demos — custom motor control
— Create a class
— Create methods
— Create an object

